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We have investigated the role of elasticity in the stability of air–fluid interfaces during
fluid displacement flows. Our investigations of the stability of coating flows with
an eccentric cylinder geometry for both a viscous Newtonian fluid and ideal elastic
Boger fluids are discussed in terms of three classes of phenomena. To begin, we
have documented several new features in traditional fingering instabilities in elastic
displacement flows. These include a very strong elastic destabilization of forward
roll coating: a destabilization which can be correlated directly with the elasticity of
the coating fluid and which appears to be present even in the absence of diverging
channel walls. Moreover, elastic effects are shown to create a novel saw-toothed cusped
pattern in the eccentric cylinder roll-and-plate geometry. Secondly, we have found
that purely elastic bulk flow instabilities in the neighbourhood of air–fluid interfaces
can cause surface deformations if the secondary flow is of sufficient strength. Finally,
flows created by the displacement of less viscous air by a more viscous elastic
fluid are found to display a new class of purely elastic instabilities which appear
to be independent of traditional viscous fingering instabilities and elastic bulk flow
instabilities. Thus interfaces which are stable for Newtonian fluids are unstable via
purely elastic mechanisms. We have found that indeed elasticity has a dramatic
effect on the stability of interfaces, not only changing the critical conditions, but
also changing the manifestation of traditional fingering instabilities, and causing new
purely elastic interfacial instabilities.

1. Introduction
Coating a uniform thin film onto a substrate is very important in the production

of such household items as photographic film and paper (Ruschak 1985). Interfacial
viscous fingering or ribbing instabilities can lead to uneven coatings and limit the
processing speeds of coating applications (Strenger, Secor & Lenx 1997). The under-
standing of coating processes is hampered by the complexity of the two-dimensional
flows and, in this context, there have been a wide variety of geometries which have
been studied, including blade coaters, extrusion slot coaters, forward roll coaters (co-
and counter-rotating), and roll–plate coaters (Ruschak 1985). There has been a large
body of work focused on the coating of Newtonian fluids (in all the geometries
mentioned above) in an effort to better understand and thereby prevent interfacial
instabilities in industrial processes (Pearson 1959; Pitts & Greiller 1961; Mill & South
1967; Greener et al. 1979; Sullivan & Middleman 1979; Rabaud, Michalland &
Couder 1990; Coyle, Macosko & Scriven 1990). Despite the fact that many industrial
coating processes involve polymeric fluids, the role of elasticity in the development



50 A. M. Grillet, A. G. Lee and E. S. G. Shaqfeh

of the base flows and their stability is not well understood (Ning, Tsai & Lui 1996;
Soules, Fernando & Glass 1988; Bauman, Sullivan & Middleman 1982; Dontula et
al. 1996; Strenger et al. 1997).

Recently there has been much progress in the understanding of the rheology of
dilute polymer solutions and the mechanisms whereby polymeric stresses can cause
flow instabilities. An example is the discovery and stability analysis of the purely elastic
Taylor–Couette instability by Muller, Larson & Shaqfeh (1989), Larson, Shaqfeh &
Muller (1990) and Shaqfeh, Muller & Larson (1992). This elastic Taylor–Couette
instability occurs in the limit of creeping or Stokes flow where inertial effects are
negligible. Thus, it is caused solely by the presence of polymers and hence elastic
stresses in the flow. In the analysis by Larson et al. (1990), the critical conditions were
found to depend on the parameter ε1/2Wi where Wi = λ × wall velocity/gap width
is the Weissenberg number, representing the ratio of elastic to viscous forces in the
flow; λ is the relaxation time of the fluid and ε is a geometric parameter defining
the dimensionless curvature in the flow. For Taylor–Couette flow ε equals the gap
width divided by radius of the cylinder. Similar purely elastic instabilities have been
studied in several other geometries including Taylor–Dean flow (Joo & Shaqfeh 1991,
1994), eccentric cylinder flow (Dris & Shaqfeh 1995), cone-and-plate and plate-and-
plate flows (Magda & Larson 1988; Byars et al. 1994) and others as summarized
in a recent review article by Shaqfeh (1996). Recirculation flows, specifically cavity
flows (McKinley, Pakdel & Öztekin 1996) and block flows (Joo 1993; Grillet &
Shaqfeh 1996), where the radius of curvature of the streamlines is comparable to
the cavity dimension, also exhibit elastic instabilities. Elastic instabilities in these
flows are of particular interest since most coating and fluid displacement flows are
characterized by fluid recirculation regions or other regions of curved streamlines
(Aidun, Triantafillopoulos & Benson 1991; Sullivan & Middleman 1979; Fernando &
Glass 1988). Despite the differences in geometries, most of the instabilities mentioned
above appear to occur at a critical value of the same dimensionless parameter, ε1/2Wi,
introduced for Taylor–Couette flow (Muller et al. 1989; Larson et al. 1990; Shaqfeh
et al. 1992; Joo & Shaqfeh 1991, 1994; Dris & Shaqfeh 1995; Byars et al. 1994;
McKinley et al. 1996) – where ε is a geometric ratio given as the characteristic scale of
the shear to the (local) radius of curvature of the flow. McKinley et al. (1996) showed
that for cavity flows, ε is dependent on the aspect ratio AR through the relationship
ε = (a+ b/AR), where a and b are constants. To date, there have been three primary
mechanisms proposed for purely elastic shear flow instabilities, all of which depend
on the occurrence of hoop stresses created by the stretching of polymer molecules
around curved streamlines (Shaqfeh 1996). An understanding of these mechanisms is
potentially useful in identifying flows which are susceptible to elastic instabilities.

Viscous fingering instabilities of Newtonian fluids in Hele–Shaw and porous media
flows, as described in a recent review article by Homsy (1987), are driven, in general,
by differences in the pressure gradient between two fluids in fluid–fluid displacement
flows. If the displacing fluid is less viscous than the displaced fluid (which is the
case for most coating flows), the interface may be unstable for all velocities. If the
displacing fluid is more viscous, then the interface is generally stable, though recently
Michalland, Rabaud & Couder (1996) have shown that there are some exceptions
for flows of Newtonian fluids between converging walls. Our experiments are not
within the small unstable regime they found, so for the following discussion, flow
with a more viscous Newtonian displacing fluid is stable. We shall denote these two
classes of coating flows air⇒fluid displacement and fluid⇒air displacement flows
respectively.
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If the Hele–Shaw cell is aligned vertically and if the less viscous upper fluid is
displacing a denser fluid below, then gravity will in general stabilize the advancing
interface. The stability analysis to determine the onset condition for fingering was
accomplished in an early analysis by Saffman & Taylor (1958). Their expression gives
a critical condition for air⇒fluid displacement in terms of the dimensionless capillary
number, the ratio of viscous to surface tension forces, as

Cacrit =
µU

σ
=

(ρ− ρair)gb2

12σ
(1.1)

where µ is the fluid viscosity, U the mean flow velocity, σ the surface tension, ρ is the
fluid density, ρair is the air density, g is the gravitational acceleration constant, and b
is the gap thickness. Alternatively, we can write this condition as

Ca

Bo
=

µU

ρgb2
= G =

1

12
(1.2)

where the ratio of capillary to Bond numbers is written as G the gravity parameter.
This dimensionless parameter relates the strength of the viscous forces to gravitational
forces. For sufficiently small gaps, the gravity effects are small relative to surface
tension (Coyle et al. 1990) since the associated Bond number Bo = ρgb2/σ is small.

If the bounding walls of the Hele–Shaw cell are not parallel then the diverging
or converging walls can effect the critical condition for fingering instabilities in
Newtonian fluids as shown by Pearson (1959) and Pitts & Greiller (1961). They found
that if a more viscous fluid was driven from a diverging channel (figure 1a), then
the interface would be stable below a critical speed which was dependent on the
divergence angle α or wall slope tan(α/2). Likewise displacement from a converging
channel was destabilized relative to that between parallel walls. For a given diverging
channel, Pitts & Greiller (1961) completed a one-dimensional stability analysis in the
absence of gravitational effects and found the critical condition to be

Cacrit = 1
3

tan (α/2). (1.3)

Despite the explicit role of the divergence angle, researchers have in general presented
their results in terms of the dimensionless minimum gap width (Pitts & Greiller 1961;
Mill & South 1967; Greener et al. 1980; deBruyn & Pan 1995), because the gap width
is a fixed geometric parameter in experiments. On the other hand, the divergence
angle is difficult to measure experimentally, since it is a function of the location of the
meniscus which is in turn a complex function of the two-dimensional flow. As a result
a number of researchers have found different power-law scalings for the dependence
of the critical capillary numbers on the dimensionless gap width. Coyle et al. (1990)
were able to explain these scaling discrepancies in the experimental results on forward
roll coating by using finite element simulations to model the two-dimensional flow
(shown in figure 8 versus wall slope tan(α/2)). Their stability analysis compared well
with experimental data over two orders of magnitude of dimensionless gap widths.

Although the critical conditions for fingering in Newtonian fluids are well under-
stood, the effects of fluid elasticity on these conditions are less clear. Fingering
instabilities in radial Hele–Shaw cells with Boger fluids and shear–thinning polyacryl-
amide fluids have been experimentally investigated by Allen & Boger (1988) and
Weisser (1996). For immiscible fluids, Allen & Boger (1988) found that the fingering
patterns for these highly elastic fluids and Newtonian fluids were remarkably similar
for comparable viscosity ratios. While they did not calculate a Weissenberg number
for their flows, they postulated that the Weissenberg number in their experiments may
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Figure 1. Experimental geometries: (a) diverging wedge;
(b) eccentric cylinder coating apparatus.

have been too low to witness a significant elastic effect. Weisser (1996) investigated the
radial Hele–Shaw cell with miscible fluids and also found no significant elastic effect.
Both researchers did find that shear-thinning fluids displayed much finer fingering
patterns.

The stability of polyacrylamide Boger fluids in the forward roll coating and roll–
plate geometries has been investigated by Bauman et al. (1982) and later by Dontula
et al. (1996). Even for a fluid with a concentration of 10 p.p.m. of polymer which
exhibited no measurable normal forces under shear, the critical conditions for the
instability decreased by a factor of two. A qualitative explanation of the destabilizing
effect of the polymer additive was developed by looking at the local extensional flow
near the stagnation point on the free surface; however there was no quantitative com-
parison between theory and experiment. The importance of the extensional behaviour
of polymeric fluids to coating instabilities was studied by Soules et al. (1988). Using
a spinning fibre apparatus to measure the dynamic uniaxial extensional viscosities
of many polymer coating fluids, they found that increased extensional viscosities
decreased the critical capillary number for fingering instabilities in a forward roll
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coating device. On the other hand, elasticity was found to be stabilizing in extrusion
slot coating (Ning et al. 1996).

This paper continues an ongoing investigation of purely elastic instabilities in
recirculation flows, focusing on recirculation flows with free surfaces. We began our
study by looking at purely elastic bulk flow instabilities in the neighbourhood of a
free surface, though we quickly expanded the scope as we discovered rich and diverse
dynamics, with new transitions and a new class of purely elastic interfacial instabilities.
To begin, we describe how elasticity can affect traditional viscous fingering in two
common air⇒fluid displacement flows. Thereafter we discuss surface deformations
caused by purely elastic bulk flow instabilities. Finally, a new class of purely elastic
interfacial instabilities in fluid⇒air displacement flows will be examined. As an
introduction to these investigations, we next describe our experimental apparatus.

2. Experimental apparatus
In our experiments, air⇒fluid and fluid⇒air displacement flows are created by

placing one cylinder inside another and filling the gap between the cylinders half
full of liquid (figure 1b). The outer cylinder, which has a radius of R2 = 8.5 cm,
is machined and polished Plexiglas to allow complete visualization of the interface.
The inner cylinder is anodized aluminium with a radius of R1 = 7.5 cm. The surface
roughness of both cylinders was measured to be less than 10 µm which should
not be significant since our minimum gaps widths are > 1000 µm = 1 mm. The
angular velocity (ω1, ω2) of each cylinder is independently computer controlled (Joo
& Shaqfeh 1994). The axis of the inner cylinder can be shifted parallel to the axis of
the outer cylinder such that eccentric cylinder flow can be generated. The minimum
gap in all geometries is denoted as b and ranged from 1 mm to bmax = 1 cm (i.e.
concentric cylinder flow). One endwall (left side of figures 10, 12 and 15) is held
stationary while the other endwall rotates with the outer cylinder. For experiments
with only one cylinder rotating, we have always used the inner cylinder to remove the
asymmetric end conditions. The Reynolds numbers are < 0.05 for all flows examined,
and therefore in later discussions we will always exclude inertial effects.

This experimental system allows us great flexibility in that we can study diverging
and parallel channels in the neighbourhood of the air–liquid interface simply by
adjusting the eccentricity of the cylinders. Besides eccentricity, we can also modify the
flow by placing a block between the two cylinders which is mounted on the stationary
endwall. A Teflon sheath around the block presses against and seals the cylinder walls
preventing fluid flux in the azimuthal direction. This block thus introduces a pressure
gradient opposing the shearing motion in the fluid. The block is designed such that
it can only be used in the concentric cylinder configuration.

Eccentric and concentric cylinder geometries have also been used to study purely
elastic instabilities in the bulk (i.e. in the absence of fluid–air interfaces) (Muller et al.
1989; Joo & Shaqfeh 1991; Dris & Shaqfeh 1995). The critical conditions for these
instabilities (in the geometry of our experiments) are all above Wi = λγ̇ > 15 where
λ is the relaxation time of the fluid and γ̇, the ratio of average wall velocity and gap
width, is a characteristic shear rate. These critical values are well above the relevant
critical Wi for the work presented in this paper (Dris & Shaqfeh 1995; Joo & Shaqfeh
1994). On the other hand, the recirculation region near the block displays purely
elastic instabilities at lower critical values, Wic = 2–4 (Grillet & Shaqfeh 1996). Thus
these blocked geometries provide an opportunity to investigate the effect of purely
elastic bulk flow instabilities on nearby interfaces.



54 A. M. Grillet, A. G. Lee and E. S. G. Shaqfeh
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Figure 2. Coating and injection flows studied: (a) eccentric cylinder forward roll coating flow;
(b) eccentric cylinder roll-and-plate flow; (c) inverse roll-and-plate flow; (d) inverse forward roll
coating flow.

This paper will focus on four flows which we found to display the most interesting
dynamics (figure 2). First we look at eccentric cylinder forward roll coating flow
where both cylinders are co-rotating at the same angular speed towards the air ω:
this is denoted as (a) in figure 2. Since the difference in the radii of the two cylinders
is small, the difference in the linear speeds is neglected and U = ωR is defined
as the average wall velocity where R = 1

2
(R1 + R2) is the average cylinder radius.

This flow is analogous to forward roll coating with the associated classical viscous
fingering instability (Coyle et al. 1990). Second, we investigate the eccentric cylinder
coating flow with only one cylinder moving toward the air (b): this is similar to
the roll-and-plate flow studied by Bauman et al. (1982). In this case, the capillary
number is defined using only the angular speed of the moving cylinder U = ω1R. In
both air⇒fluid displacement flows, the fluid leaves a wet film on the surface of the
cylinders. Next we examine two fluid⇒air displacement flows where the more viscous
fluid is displacing the less viscous air – these flows are stable to traditional Newtonian
viscous fingering instabilities. Two cases are studied: (c) inverse roll-and-plate flow
with one cylinder moving into the fluid at the interface (U = ω1R), and (d) inverse
forward roll coating flow where both cylinders move at the same speed into the fluid
(U = ωR). Both of these flows are examined in a concentric cylinder geometry with
the Teflon coated block, so the cylinder walls moving into the fluid have traces of
fluid (i.e. the fluid has not dewetted from the surface) but the film thicknesses are not
measurable.

Some unique aspects of our apparatus should be kept in mind when considering
our results. The divergence angle between the two cylinders is small compared to
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most forward roll coaters because the divergence is due to the difference in curvature
of the cylinders and the cylinders are of similar size. In our experiments the largest
divergence angle was around 5◦, compared to divergence angles of over 80◦ achievable
in Coyle et al. (1990)’s forward roll coating apparatus. The length of the device, L, is
16 cm; so for a minimum gap width of 0.1 cm, the dimensionless length of the coating
gap between the cylinders, L/b = 16 cm/0.1 cm = 160. DeBruyn & Pan (1995) found
finite end effects to be stabilizing for the eccentric cylinder roll–plate flow, thus we
anticipate that finite end effects may also influence the onset of the instability in
our experiments. However, they found that sufficiently above the critical condition,
there was no difference in the measured wavelength compared to an ‘infinite’ cylinder
experiment. Another important factor in our experiments is that gravity is a significant
and usually the dominant stabilizing agent because of the relatively large gap sizes
used. Thus ρgb2/12σ (cf. (1.1)) is comparable to or greater than tan (α/2)/3 (cf. (1.3))
in most of our experiments. Therefore, gravity stabilizes the interface and can also
affect the wavelength selection process (Saffman & Taylor 1958).

Determining the critical condition for these interfacial instabilities can be difficult.
Unaided visual observation of the interface for deformations may appear rather
arbitrary, but in a comparison of three decades of visual observation data of forward
roll coaters, Coyle et al. (1990) found that all of the data coincided very well. The
critical condition in our experiments was determined when deformations were visible
at the interface which were sinusoidal and distinguishable from small deformations
near the ends.

The observed wavelength, Λ, of the instability was measured by averaging over
all of the peaks visible on the interface. For steady interface patterns, the peaks
were generally very regular except just at the critical onset of the instability. For
more dynamic interface patterns, the peaks were not always as evenly spaced, but in
almost all cases the averaged wavelength was constant in time. The wavelength will
be reported in terms of the dimensionless wavenumber n defined as

n =
2πb

Λ
, (2.1)

where b is the minimum gap between the cylinders. The observed wavelength can
be analysed further by performing a discrete fast Fourier transform on the interface
pattern to determine the frequency spectrum of the instability. An image of the
unstable interface was captured, digitized and imported into NIH image. 256 points
were evenly spaced along the the unstable interface and the vertical position of the
interface was recorded. The mean interface location was subtracted from the points
to remove the delta function at zero in the intensity spectrum and the dominant
wavenumber of the resulting spectrum is defined as the nFFT . We will show that the
results are consistent with the observed wavenumber for cases where the unstable
interface is stationary in time.

Two types of fluid were used in this study: the Newtonian fluid was an Amoco H–40
Indopol polybutene polymer with number averaged molecular weight near 750 and a
viscosity of 110 P graciously donated by Amoco Chemical Company. The viscoelastic
Boger fluids were made by mixing 0.1 wt% high molecular weight polyisobutylene
(Scientific Polymer Products, Inc –Mn = 4, 700, 000) into a combination of 3.5 wt%
kerosene (Aldrich) and 96.4 wt% polybutene (Amoco Chemical Co.). The viscosity
of the final solution was controlled through the polybutene solvent viscosity by
combining the H–40 Indopol product with H–100 Indopol polybutene (Mn = 940,
µ ≈ 215 P). These fluids were characterized using a Rheometrics Dynamic Analyzer II
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Figure 3. Typical rheology of experimental Boger fluids: (a) steady shear rate sweep;
(b) normal force decay after cessation of steady shear and exponential fit.

normal stress, controlled strain rheometer. The pure polybutene exhibited a constant
shear viscosity and no measurable normal force over a wide range of shear rates
(0.1–50 s−1). The first normal stress coefficient, Ψ1, for the viscoelastic fluid was
approximately constant over a decade of shear rates (3–20 s−1) and the shear viscosity
was constant over three decades (figure 3a), as is usually characteristic of ideal elastic
fluids (Boger & Mackay 1991; Larson 1988). The relaxation times of the elastic fluids,
λ, were determined by fitting the decay of the normal stress after steady shear to a
single exponential (figure 3b). While this is only an approximation of the spectrum of
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N =
λσ

µbmax

µ
(P)

λ
(s)

σ
(dyne cm−1)

Newtonian 96 0.0 29.4
0.19 326 2.1 30.0
0.47 217 3.2 32.0
0.62 234 4.4 32.8
0.96 117 3.5 32.0

Table 1. Physical properties for experimental fluids.

relaxation times possessed by a real fluid, this transient relaxation time has been found
to correlate the occurrence of purely elastic instabilities (Larson et al. 1990; Magda &
Larson 1988). These tests were performed for the range of temperatures used in our
experiments (19–21 ◦C), so the temperature dependence of the viscosity and relaxation
times was taken into account when calculating the Weissenberg and capillary numbers
for each experiment. Surface tension was measured using a Wilhelmy balance for
several temperatures and found to be relatively insensitive to temperature variation.
To get a measure of the elasticity of each of the Boger fluids which is not dependent
on the velocity or experimental gap width, we define an elasticity parameter N as
the ratio of the Weissenberg and capillary numbers at the maximum gap width:

N =
Uλ/bmax

µU/σ
=

λσ

µbmax
. (2.2)

Note that N is defined using the gap width in concentric cylinders bmax = 1 cm, so
that the N value for a given fluid is independent of the minimum gap width b and
therefore is a constant for a series of experiments at varying gap widths. Physically
this parameter can be thought of as the ratio of the polymer relaxation time and
the time for an interface deformed by an amount bmax to relax under surface tension.
The fluids used in these experiments spanned N values from zero to one. Table 1
presents the physical properties for most of the fluids used in this work listed by their
N values.

These fluids were seeded with < 0.01 wt% mica flakes (Mearl Corp.) in order to
visualize any secondary flow. Pakdel, Speigelberg & McKinley (1997) have shown
that the addition of mica flakes to a similar Boger fluid does not measurably change
the rheology. An instability in the bulk fluid is manifested by light and dark striped
bands as the small particles align with the vortices of the secondary flow. For a global
instability such as the purely elastic Taylor–Couette instability, the pattern appears in
all of the fluid when the critical Weissenberg number is reached (Muller et al. 1989).
For local instabilities, such as the recirculation block instability, the banded mica
pattern appears locally in the unstable recirculation region at the critical condition,
then propagates into the bulk fluid as the velocity is increased further (Grillet &
Shaqfeh 1996). This indicates that the secondary flow created by the instabilities is
advecting downstream.

3. Eccentric cylinder forward roll coating flow
We shall begin our discussion of the effect of elasticity on the stability of interfaces

in air⇒fluid displacement flows by presenting our results on the eccentric forward
roll coating flow (figure 2a). This flow has been the most widely studied by previous
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Figure 4. Experimental measurements of gap width at the interface and coating film thickness on
cylinder walls: (a) measurements of h the gap width at the meniscus; (b) sample digital image of
coating films; (c) measurements of the coating film thickness m1 = m2 = m for the Newtonian fluid
(- -•- -).

researchers (Coyle et al. 1990), and is one of the few such flows which has been
investigated with elastic fluids (Soules et al. 1988; Bauman et al. 1982; Dontula et al.
1996; Fernando & Glass 1988). In addition, there are explicit theoretical predictions
for the dispersion relationship and critical conditions for Newtonian fluids (Saffman
& Taylor 1958). Thus, by comparison with all of these results, we seek to understand
the effect of elasticity on the critical capillary number.

We first report on an investigation of the stability of Newtonian fluids for a
range of dimensionless minimum gap ratios, b/R. For capillary numbers at which
the flow is stable, the interface remained smooth, producing an even coating on the
surfaces of the cylinders. The angular location of the interface on the outer cylinder,
β, was recorded and used to calculate the local divergence angle of the cylinder
walls, α, as well as the local gap thickness at the meniscus, h (figure 4a). We can
also experimentally measure the thickness of the fluid film while the flow is stable
by digitally photographing a radial slice illuminated with a laser sheet (figure 4b).
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Figure 4(b) shows the thickness of an individual Newtonian film where the fractional
coverage of a film at the meniscus is defined as

m1 =
film thickness on inner cylinder

h
, (3.1)

m2 =
film thickness on outer cylinder

h
. (3.2)

The inner and outer film thicknesses were found to be comparable (m1 ∼ m2 = m
in figure 4c) and the fractional coverage m was found to remain fairly constant for
b/R > 0.025.

Above a critical capillary number, undulations appeared in the interface which
thereafter grew in amplitude to form fingers. These critical conditions are plotted
versus the gap ratio and compared to a modified Saffman–Taylor theory for New-
tonian fluids (figure 5). This modified Saffman–Taylor theory includes the gravity
stabilization and the stabilization due to the gap divergence. However it includes the
latter only through a one-dimensional analysis originally presented by Pitts & Greiller
(1961) and does not include the global two-dimensional flow effects (i.e. the streamwise
variation of the lubrication flow) which is necessary to properly characterize the long
waves (Pearson 1959; Reinelt 1995). We shall return to these shortcomings below.
The modified Saffman–Taylor theory can be summarized by the set of equations

Γ = Ca ñ− ñBo h2 cos (β)

12b2
− ñ tan (α/2)

3
− ñ3

12
, (3.3)

Cacrit =
tan (α/2)

3
+
Bo h2 cos (β)

12b2
, (3.4)

Gcrit = Cacrit/Bo, (3.5)

ñ = 2πh/Λ, (3.6)

where ñ is the dimensionless wavenumber of the disturbance scaled with the gap
width at the meniscus. The Bond number Bo and the gravity parameter G are defined
in terms of the important dimensional parameters as

Bo =
ρgb2

σ
, G =

µU

ρgb2
. (3.7)

Moreover, Γ is the growth rate of the surface deformations (made dimensionless with
σ/µR). On the right-hand side of (3.3), the last two terms are clearly stabilizing (as is
the gravity term proportional to Bo) and are due to surface tension. The term propor-
tional to tan(α/2) is the stabilization due to the channel divergence. As discussed in
the Introduction, we found that over the entire range of dimensional gaps examined
(1 mm 6 h 6 1 cm) the gravitation stabilization was comparable to or greater than
that due to surface tension. This was actually tested in two different ways. First we
calculated the ratio of the gravity stabilization term (term 2 on the right-hand side of
(3.3) above) to the surface tension stabilization terms (terms 3 and 4 on the right-hand
side of (3.3) and found that above a dimensionless gap of b/R ≈ 0.009 the former
was dominant. Secondly, we rotated our apparatus 90◦ counterclockwise from the
configuration shown in figure 2(a) such that gravity was acting normal to the cylinder
walls at the minimum gap and found that the critical conditions for onset of fingering
departed from and fell significantly below those reported in figure 5 for gaps greater
than b/R ≈ 0.009. Thus we have chosen to present our results (figure 5a) in terms
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of the gravity parameter, G, where appropriate. Since the location of the interface β,
and hence the gap width at the meniscus h, are not known a priori, these values are
determined from experiment and used to calculate the predicted critical condition for
each geometry. Note that the agreement is fairly good over the entire range with the
measured critical conditions being about 5–10% above the Saffman–Taylor theory
throughout. To expand the data for large gaps where the data are almost overlapping,
we have also included a small inset plot. For the smallest gap studied, b/R = 0.0125,
the critical linear speed of the cylinders for a Newtonian fluid was U = 0.08 cm s−1,
while for the concentric case, the critical speed increased to U = 0.94 cm s−1. We
should note that the applied acceleration rate 5 cm s−2 is quite large so the speed
reaches a constant value within seconds, whereas the onset of the instability at critical
usually takes more than 5 minutes.

The uniform 5–10% discrepancy from the Saffman–Taylor result is significant
however and some discussion is appropriate (we note in this context, that when
presented in terms of the critical capillary number, cf. figure 5b, the error is somewhat
larger). From the Saffman–Taylor result (3.3) the instability is a long-wave instability,
but it has been recognized previously by Pearson (1959), Pitts & Greiller (1961)
and in calculations by Reinelt (1995) for the eccentric cylinder geometry that global
effects, i.e. those on the streamwise long length scale of the lubrication flow, determine
the stability of waves which are of comparable dimension to the streamwise scale.
In the eccentric cylinder device, for small gaps and thus in the surface-tension-
dominant regime, calculations by Reinelt (1995) and Pitts & Greiller (1961) showed
that the resulting waves were chosen to be of size (Rb)1/2 and thus the dimensionless
wavenumber is O(b/R)1/2. These global effects cause a change in the critical condition
for the long waves which is comparable to the square root of the ratio of the gap
to cylinder radius (in our experiments about 20%). These global effects are not
included in the modified Saffman–Taylor result in (3.3) and have been found to be
stabilizing (Pitts & Greiller 1961; Reinelt 1995). For larger gaps (and thus small
eccentricities) we know of no analysis which demonstrates how the wavenumber
selection process is modified by the streamwise variation (e.g. curvature) of this nearly
concentric cylinder flow. Note that in our experiments, the radius of the cylinders
is only half the size of the vessel length, thus it seems reasonable that end effects
may also affect the stability process. In another context, deBruyn & Pan (1995) have
witnessed strong stabilization of ribbing in the eccentric cylinder roll–plate geometry
due to the decreases in dimensionless length of the cylinders L/R (by decreasing
the radius of the inner cylinder for a constant length) when compared to the finite
element predictions for the forward roll coating geometry by Coyle et al. (1990). It
is therefore reasonable to assume that the global effects of either curvature or the
finite length of the vessel might contribute to the discrepancy in the comparison to
the modified Saffman–Taylor theory.

Moreover, the thickness of the coating films deposited on the cylinder surfaces has
not been included in the aforementioned theory (i.e. (3.3)). In order to account for
the discrepancies between our experiment and the modified Saffman–Taylor theory,
we have repeated the one-dimensional analysis including the effect of film thickness
(following the analysis of Reinelt 1995). This analysis is summarized in the Appendix
as are the approximations made in its development. The resulting growth rate in the
limit of long waves was found to be

Γ = ñCa− ñBo cos (β)h2

12 (1− 2m) b2
, (3.8)
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- -•- -, Newtonian fluid. Elastic fluid: —4—, N = 0.19; —�—, N = 0.47; —×—, N = 0.62;
—�—, N = 0.96.

where m is the fluid film thickness coated onto the cylinders. If we set the growth rate
to zero, the critical condition is

Gcrit =
cos (β)h2

12 (1− 2m) b2
. (3.9)

The location of the interface and the film thicknesses are measured experimentally and
used in (3.9) to calculate the critical condition shown in figure 5. Despite neglecting
the stabilization due to both surface tension and the diverging walls, the predictions
of this new theory agree with our Newtonian experiments very well. Note that the
factor of (1− 2m) in (3.9) has the simple physical interpretation that the destabilizing
pressure gradient in the base state is reduced by (1− 2m) because of the film flow.

Figures 6 and 7 present the critical conditions measured in our eccentric cylinder
forward roll coating device for the elastic fluids described in § 2 and characterized by
elasticity parameters N = λσ/µbmax = 0.19, 0.47, 0.62, 0.96. The data are presented
over the same range of gap ratio as for our Newtonian results and the latter are
included for comparison. For the weakly elastic fluid,N = 0.19 there is no measurable
change in the critical conditions over the Newtonian fluid flow. However for the more
elastic fluids, N = 0.62 and 0.96 there is a very significant decrease in the elastic
critical speed for the onset of instability causing the critical capillary number to fall
by a factor of 3 for the largest gap ratios (i.e. concentric cylinder flow).

The results are again best presented in terms of the gravity number, where the
destabilization for these latter two elastic fluids occurs as a near-constant shift of the
critical values by nearly a factor of 2 over the entire range of gap ratios. This is clearly
evident when we expand the small gravity parameter data in the inset. Whereas the
critical gravity parameter was constant at large gaps for the Newtonian fluid, for the
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elastic fluids the critical condition becomes a strong function of both N and b/R.
We note that there is a large change in the critical conditions between the N = 0.47
and N = 0.62 fluids, and a continued but more modest change when N is further
increased to 0.96.

Our critical capillary numbers are also shown as a function of wall slope tan(α/2)
in figure 8 compared to the Newtonian finite element predictions by Coyle et al.
(1990) as well as the elastic forward roll coating experiments by Bauman et al. (1982)
and Dontula et al. (1996). Clearly our results are not comparable to any of these
theories or measurements primarily because of the gravitational stabilization that is
present throughout our experiments (and thus the good agreement with the more
complete theory which includes gravity stabilization and film thickness in figure 5).
Our experiments at smaller gap widths (the lower portion of our data) approach the
other data as the surface tension stabilization becomes comparable to the gravity
stabilization in our experiments. Note however that in figure 8 it is demonstrated
quite clearly that our critical conditions do not scale with the divergence angle of
the channel as would be expected (and is found) if surface tension dominates the
stabilization of the fingering pattern. This further confirms our choice of G as the
appropriate dimensionless group for our experiments.

The observed dimensionless wavenumber, n, at onset of instability grew approxi-
mately linearly for larger gaps (b/R > 0.04) (figure 9). There is significant scatter in the
measurements, especially for small wavenumbers since for these cases there were only
1 or 2 wavelengths across the vessel at the critical gravity parameter. This is especially
apparent in the Newtonian data where a shift is seen at b/R > 0.9 when the instability
shifts from two wavelengths at onset to one wavelength. As discussed above, from the
calculations by Reinelt (1995) and Pitts & Greiller (1961) we expect that for small
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gaps where surface tension is dominant, the dimensionless wavenumber should grow
like (b/R)1/2 in agreement with the global streamwise variation of the flow stabilizing
longer waves. We cannot discern this trend in our experimental data, probably because
we have only a small range of very narrow gaps widths where capillary forces are
dominant. At large gaps in our experiments, gravitational stabilization is important
and as far as we know, no one has considered the wavenumber selection process for
Newtonian fluids under these conditions. However, when the same experiments are
completed with elastic fluids, a general strong increase in wavenumber at the critical
condition was discovered (figure 9). The dimensionless observed wavenumber clearly
increased with increasing elasticity and the wavenumbers were as much as a factor
of 3–4 higher than those for the Newtonian fluid for the largest gaps and highest
values of the elasticity coefficient (figure 9). The trend in the unstable wavenumber
with increasing N is similar to the trend in the critical gravity parameter because
the difference in the wavenumber at any value of b/R between the flow at N = 0.47
and 0.62 is larger than the increase caused by further increasingN to 0.96. Note that
for gaps larger than b/R > 0.05 the dimensionless wavenumber n = 2πb/Λ for both
the elastic and Newtonian fingering instabilities increased approximately linearly with
gap width, since the measured dimensional wavelength Λ is almost constant for these
gap widths. In fact for the highly elastic fluids, within experimental error no increase
in critical dimensional wavelength was noted for gap widths greater than 0.02R.

For small gaps, wavenumbers for both elastic and Newtonian flows increased as
the wall velocity was increased above the critical condition. The smooth undulating
variation in the interface at the critical condition developed into several air fingers
separated by liquid bridges and above the critical condition, tip splitting of the air
fingers became more frequent. Because of the relatively small divergence angles in our
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geometry, the fluid between the air fingers extends far from the interface and provides
a pictorial history of the location of fingers and tip splitting at the interface. At low
and moderate capillary numbers, the surface would only tip-split and evolve until a
stable wavenumber was reached, leading ultimately to long straight liquid bridges,
whereas at high capillary numbers the interface was relatively dynamic with significant
tip splitting even during fully developed flow (figure 10a) leading to oscillations in the
positions of the liquid bridges where merging bridges would appear as small branches
off the main bridge.

For fingering instabilities in elastic fluids, the occurrence of tip splitting was
significantly enhanced as the capillary number was increased past the critical condition
forming almost dendritic patterns. Instead of the occasional tip splitting seen in
the Newtonian case, the fingers in the elastic fluid were constantly tip splitting
resulting in liquid bridges which produced tree-like structures. The increased tip
splitting at high capillary numbers was apparent even in the weakly elastic fluid
N = 0.29 (figure 10b) where the onset of the instability is virtually identical to the
Newtonian fluid (figures 6, 9). For the more highly elastic fluids, the shape of the
fingers at the interface changed dramatically with triangular shaped structures instead
of the flattened interface associated with the Newtonian instability (figure 10c).

4. Eccentric cylinder roll-and-plate flow
Fingering instabilities in the roll-and-plate geometry (figure 2b) have been thor-

oughly investigated for Newtonian fluids at onset and for moderate supercritical
capillary numbers by other researchers (Sullivan & Middleman 1979; Bauman et al.
1982; Rabaud et al. 1990; deBruyn & Pan 1995). For comparison, we bench-marked
the behaviour of our Newtonian fluid from low to high capillary numbers. Since
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Figure 10. Eccentric cylinder forward roll coating instabilities for high capillary numbers
(b/R = 0.0125): (a) Newtonian fluid Ca = 4.5; (b) elastic fluid Ca = 4.4, N = 0.29;
(c) elastic fluid Ca = 5, N = 0.96.

gravity stabilization is important for our geometry the measured critical conditions
are not comparable to those measured by other researchers. At low capillary numbers,
the interface was smooth and uniform. When a critical speed was exceeded for small
and moderate gap widths (b/R 6 0.075), small undulations appeared in the interface
which would then grow into the characteristic fingers associated with this class of
viscous interfacial instabilities (Sullivan & Middleman 1979). The critical capillary
numbers for the Newtonian fluid, as shown in figure 11, increased dramatically with
gap width. For our largest gap widths (b/R > 0.075) we were not able to deter-
mine the Newtonian critical condition because large bubbles were drawn into the
fluid from the backside of the cylinders, disrupting the coating meniscus. Previous
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researchers have compared their results to theoretical predictions for the forward roll
coating geometry since no theory exists for the roll-and-plate geometry. However, we
found that the modified Saffman–Taylor theory developed for forward roll coating
flow underpredicted the critical capillary number for even moderate gap widths (cf.
figure 11).

As the capillary number was increased above the critical value for the Newtonian
fluid, the initially thick fingers became more slender and the wavelength decreased
(figure 12a, b). Tip splitting occurred during start-up until the correct wavelength was
selected by the system. As before, once the desired wavelength was reached, there was
only very occasional tip splitting at the interface. An interesting transition occurred
for high capillary numbers (Ca & 15). The thin liquid bridges stretching between the
inner and outer cylinders separating the air fingers became so thin that they broke,
forming fingerless waves at the interface instead of the traditional finger shaped
interface pattern (figure 12c). This state was stationary, but not entirely stable, as
occasionally small bridges would reach out from the tips of the waves, then snap
again breaking the connection between the cylinder walls. Since the variation in
location of the interface was smaller than with normal viscous fingers, the variations
in surface coating thickness (by visual observation) are also smaller, resulting in a
more even coating. The capillary number as a function of the observed dimensionless
wavenumber is plotted in figure 13 showing a simple exponential dependence for
Newtonian fluids over the whole range of capillary numbers investigated. If we
more closely examine the frequency components of the wavenumber for the images
shown in figure 12, we find that the wavenumber of the primary peak increases
as the capillary number increases (figure 14). In all cases, at least one harmonic
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Figure 12. Interface patterns characteristic of various regimes of Newtonian roll-and-plate fingering
instabilities (b/R = 0.0125): (a) thick fingers near critical Ca ≈ 0.8; (b) thin fingers above critical
Ca ≈ 2.2; (c) fingerless waves Ca ≈ 61.

peak is also captured since the interface pattern is not perfectly sinusoidal. The small
deviations in the frequencies from exact harmonics are within the discretization errors
of the calculation. The intensity of the primary frequency increases with the observed
increase in the finger amplitude, then plummets with the appearance of the fingerless
waves. The wavenumber of the primary peak agrees very well with the observed
wavenumbers as shown in figure 13.

The roll-and-plate fingering instability for weakly elastic Boger fluids (N < 0.3)
appeared very similar to the Newtonian fluids for small gaps and capillary numbers
(Ca 6 2) (figures 12a, 15a). At onset, smooth fingers formed at virtually the same
critical capillary number and wavenumber. The wavenumber development as capillary
number increased was similar, though instead of sporadic tip splitting until a stable
pattern was reached, the interface began to tip-split much more frequently until
the surface was constantly tip splitting. As shown in figure 15(b), the interface
would select a dominant wavelength which remained constant as shown by the large
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liquid bridges, but the interface was very dynamic, constantly splitting and forming
smaller bridges which would then merge with the larger dominant liquid bridges. For
most cases a dominant observed wavenumber could be determined. These branching
interface patterns did not stabilize even after over an hour of fully developed flow
when at a similar value of the capillary number a Newtonian fluid interface would
have stabilized in around 20 minutes. In this branched regime, the larger dominant
observed wavenumber was similar to that characterizing the Newtonian viscous
instability (figure 13).

Upon increasing the capillary number further, a completely different cusped, saw-
toothed pattern appeared (figure 15c). When the flow was started from rest at a
speed above the critical speed for ‘cusping’, the interface would develop similarly to
the branched interface, but after a few minutes, the smooth air fingers underwent a
sudden transition to a sharp pointed interface. Each finger transitioned independently.
However, after a few minutes, all fingers were cusped. Close inspection of the interface
as the capillary number approaches the transition reveals that the air finger was
pressed very close to the stationary outer cylinder. The cusp began as a small triangle
in the interface at the bottom edge of the smooth finger which would grow absorbing
the entire finger. The cusped finger penetrated further into the fluid than the smooth
finger had previously. For different gaps, the transition to cusped, saw-toothed fingers
was not governed by the capillary number nor the Weissenberg number as shown in
figure 16 leading us to speculate that the cusping transition is a complex function of
both interfacial and elastic forces. For the three fluids tested, the critical conditions
collapse for a scaling of Wi1/2 Ca (figure 16c). Also, the wavenumber of the cusped
fingers was characterized by a different power-law exponent than the smooth finger
instabilities, increasing more quickly with increasing capillary number (figure 13 open
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Figure 14. Fast Fourier transform power spectra for roll-and-plate fingering instability in
Newtonian fluids for images in figure 12 (b/R = 0.0125): (a) Ca ≈ 0.8; (b) Ca ≈ 2.2;
(c) Ca ≈ 61.
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Figure 15. Interface patterns characteristic of various regimes of elastic roll-and-plate fingering
instabilities in small gap ratios (b/R = 0.0125,N = 0.29): (a) Thick fingers near critical Ca = 0.7;
(b) chaotic behaviour above critical Ca = 2.2; (c) saw-toothed cusped fingers Ca = 3.4.

symbols). Note that inertially driven saw-tooth cusped instabilities have been reported
previously at the free surface between air and Newtonian liquid for flow in a partially
filled rotating cylinder by Thoroddsen & Mahadevan (1997).

The dynamics of the saw-toothed cusped interface were also different from the
dynamics of the smooth fingers. Though they did merge with neighbouring fingers,
the structure was very resistant to tip-splitting because of the pointed ends. Near the
onset of cusping, the most common mechanism for surface evolution involved the
cusps blunting into rounded fingers which receded away from the minimum gap, split
into two fingers as shown in figure 17. The mica speck to the right of the cusped
tip in the images is stationary, emphasizing the retreat of the cusped finger when it
splits. Typically one of these new smooth fingers (in this case the left one) would
form a cusped point and penetrate into the channel again while the other would be
absorbed by its neighbour shifting the neighbouring peak to the left and decreasing
the original wavelength.
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Figure 16. Critical condition for transition to cusped, saw-toothed fingers versus dimensionless
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Figure 17. Cusp evolution through tip-splitting (b/R = 0.0125,Ca = 5.4,N = 0.29): (a) t = 0,
initial sharp cusp; (b) t = 3 s; (c) t = 4.5 s; (d) t = 6 s, two smooth round air fingers. The white mica
flake to the right of the cusp in frame (a) is stationary.

This transition from smooth to cusped fingers can be more fully understood
by looking at the Fourier analysis of the interface patterns (figure 18). For low
capillary numbers, the power spectrum of the elastic interface is similar to that of
the Newtonian fluid showing a primary peak at nFFT = 0.30. As the rotation speed
is increased and the interface becomes more ‘dynamic’, the primary frequency shifts
as seen in the Newtonian spectra, but also a new frequency nFFT = 0.72 begins
to appear. During the analysis of this image, there were a few instances where the
interface position was multivalued because of the splitting near the tips of the air
fingers. For these cases, the lower interface position was used for the Fourier analysis.
When the interface transitions to the saw-toothed cusped interface pattern, the only
wavenumber apparent in the Fourier analysis is nFFT = 0.62 with the much smaller
second harmonic at nFFT = 1.31 cm. We can now recognize the ‘dynamic’ interface as
a transition from the initial Newtonian frequency to the elastic wavelength. A more
detailed Fourier analysis of the capillary number dependence of the wavenumber is
underway to help clarify the behavior as a function of gap width and fluid elasticity
N.

The conditions necessary for cusping are not well understood. Experimentally, we
observed a stagnation line at the interface where the fluid splits to move around
the air finger. Other researchers have postulated that a recirculation region exists
near the stationary cylinder at the meniscus (Bauman et al. (1982), Sullivan &
Middleman (1979)) similar to those seen in forward roll coating flow by Pitts and
Greiller (1961). The resulting stagnation point flow near the outer cylinder is similar
to the cusping flows studied by Jeong & Moffatt (1992). Joseph, Nelson, Renardy &
Renardy (1991) found that elastic fluids formed cusps at capillary numbers smaller
than those characterizing Newtonian fluids, but this can not explain why only the
elastic fluids display cusped interfaces. Even at capillary numbers five times the critical
value for cusping in an elastic fluid, the Newtonian fluid showed no signs of this
transition. It is possible that other changes in the flow associated with the formation
of the fingerless waves precludes the formation of cusps. It is also possible that the
presence of elasticity causes a change in the flow near the meniscus which is necessary
for the cusping behaviour. Mackley (1978) and Farrell & Keller (1978) found that
the localized high extensional viscosity of polymers near stagnation points produces
a reduction in the local strain rate and modifies the velocity field in asymmetric flows
such as this one. We can only speculate as to how this might affect such a complex
two dimensional flow.
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Figure 18. Fast Fourier transform power spectra for roll-and-plate fingering instability in elastic
fluids for images in figure 15 (b/R = 0.0125,N = 0.29): (a) Ca = 0.7; (b) Ca = 2.2; (c) Ca = 3.4.
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Another possible explanation is that the smooth round fingers are elastically
unstable. The flow around the rounded tips of the smooth fingers creates hoop
stresses which act to squeeze around the air finger. As the Weissenberg number is
increased these stresses could become large enough to make the tip of the air finger
collapse. The interface pattern chosen by the system, the pointed tip, has a more
gradual splitting of the fluid which would result in smaller hoop stresses.

5. Inverse roll-and-plate flow
The next flow that we studied was the inverse roll-and-plate flow shown in fig-

ure 2(c). Because our experimental fluids have high viscosities, it was necessary to
place a block between the cylinders to keep the fluid at the bottom of the apparatus.
Given this configuration, the more viscous fluid is displacing air; thus, for Newtonian
fluids this flow is stable to viscous fingering instabilities. Indeed, our experiments with
Newtonian fluids confirmed that the interface is stable at very high rotation speeds
(Newtonian flow is stable at U = 4 cm s−1 whereas the critical speed for interface
deformation in an elastic fluid of N = 0.19 is U = 1.7 cm s−1). There is however a
purely elastic instability associated with the recirculation region near the block which
has a critical Weissenberg number, Wic ≈ 2 (Grillet & Shaqfeh 1996).

At low speeds, corresponding to low capillary and Weissenberg numbers, the flow of
the elastic fluid is stable with a smooth interface. Above the critical condition for the
recirculation instability, a banded pattern appeared in the mica flakes in the fluid near
the block. Near the critical Weissenberg number, the instability was localized near
the block and the interface was still smooth and stable. As the Weissenberg number
increased above critical, the instability strengthened and the mica flake patterns began
to propagate throughout the flow. As the flow was further strengthened, the mica flake
patterns appeared not only in the bulk fluid, but also in the recirculation region near
the interface (figure 19a). We are certain that these patterns are associated not with a
new instability, but with the previously documented instability near the block (Grillet
& Shaqfeh 1996).

Above a critical Weissenberg number, approximately twice that necessary for the
purely elastic instability near the block, surface deformations began to appear in the
air–fluid interface. Near onset, the deformations were smooth and regular, but did not
resemble the viscous fingers discussed previously (figure 19b, c). These deformations
were correlated with the mica flake patterns caused by the recirculation instability and
had the same wavenumber as the recirculation instability near the block (figure 19d).
We believe that they were caused by that instability. As the Weissenberg number
increased, the recirculation instability strengthened such that the associated vortices
penetrated further into the bulk flow. The surface deformations appeared when the
bulk flow vortices attained sufficient strength to propagate to the other side of the
apparatus and deform the surface. When the Weissenberg number increased further,
‘tip splitting’ was more frequent and the interface between the fluid fingers was drawn
into traditional cusped shapes similar to those seen by Joseph et al. (1991).

6. Inverse forward roll coating flow
The last geometry studied is inverse forward roll coating flow between concentric

cylinders (figure 2d). This flow is equivalent to that near the interface during the
pumping of an elastic fluid into a channel, as in injection moulding of molten plastics.
For Newtonian fluids, we confirmed that the interface was again stable. Because of
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Figure 19. Inverse roll-and-plate flow instabilities: (a) mica patterns with smooth interface Wi = 3.6;
(b) interface deformations with mica patterns Wi = 4.0; (c) top view of interface deformations
Wi = 4.0; (d) purely elastic instability at the block.

the presence of the block, there was also a purely elastic instability associated with
the flow near the block (Grillet & Shaqfeh 1996).

For flows of Boger fluids at low speeds (Wi < 2), the interface was stable forming
a rounded almost semi-circular surface with a stagnation point in the middle of the
channel. The recirculation region near the block became unstable at Wi = 2 (Grillet
& Shaqfeh 1996). Even as the velocities were increased above critical, no mica flake
patterns were visible at the air–fluid interface. If the secondary flow due to the
instability at the block was not strong enough to produce a visible secondary flow, it
appears reasonable that the flow in the region around the air–fluid interface was not
affected.

Above a critical Weissenberg number Wic ≈ 2.4 (N = 0.19), we observed defor-
mations in the air–fluid interface. At this Weissenberg number, these deformations
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(a)

(b)

Figure 20. Inverse forward roll coating flow: cusped surface deformations: (a) near critical
Wi = 2.4; (b) above critical with tip-splitting at two centre-right fingers Wi = 6.0.

appeared as smooth sinusoidal variations, but quickly developed into sharp cusps
pointing into the fluid (figure 20a). The mica flakes in the fluid leaving the cusped
interface region showed a banded pattern indicative of an instability with vortices
propagating into the fluid. Near the interface, these vortices would create a flow simi-
lar to the flow used by Joseph et al. (1991) to study cusp formation. The wavenumber
of the instability was approximately n = 3, much smaller than the wavenumber
associated with the purely elastic instability near the block (n = 16), providing addi-
tional evidence that the two instabilities are not coupled. Above the critical condition,
the inverse forward roll coating flow instability appeared immediately at startup of
the flow, suggesting that it originated at the air–fluid interface. Additionally, the
interface pattern was dynamic with new cusps splitting and merging continuously
(figure 20b).

7. Summary
Our study of several fluid displacement flows with the goal of understanding the

role of elasticity in the stability of interfaces has revealed previously unknown surface
dynamics. The onset of traditional Newtonian viscous fingering in eccentric cylinder
forward roll coating flow was found to be controlled by gravity stabilization for
all but the smallest gap widths investigated and was well predicted by a modified
Saffman–Taylor theory. As the speed was increased above the critical condition, the
wavenumber n of the instability increased, and the primary wavenumber from a
Fourier analysis of the interface confirmed the location of the primary peak had
shifted. We find that the effect of elasticity in these flows can be correlated by using
the elasticity parameter N = λσ/µbmax. Weakly elastic fluids (N 6 0.3) had vir-
tually identical critical conditions and wavenumbers as the Newtonian fluid for all
gap widths. However, highly elastic fluids (N > 0.5) displayed strong destabiliza-
tion in the critical gravity parameter or capillary number as well as a pronounced
increase in the dimensionless wavenumber. All elastic fluids displayed increased tip-
splitting above critical with the highly elastic fluids having more triangular interface
shapes.



78 A. M. Grillet, A. G. Lee and E. S. G. Shaqfeh

Viscous fingering instabilities were also studied in the eccentric-cylinder roll-and-
plate flow. As in the forward roll coating geometry, our critical capillary numbers
were larger than those observed by other researchers owing to gravity stabilization.
There has been no theory derived for the Newtonian flow in this geometry, and this
stabilization cannot be explained by using the modified Saffman–Taylor theory for
forward roll coating flow. The observed and Fourier wavenumbers were both found
to increase with capillary number above the critical condition. At very high capillary
numbers, a novel fingerless wave interface pattern was documented. Because the
amplitude of these peaks was smaller, the resulting variations in the thickness of the
coating film were reduced.

We have also discovered novel interface patterns associated with fingering instabil-
ities of elastic fluids in the roll-and-plate geometry. The capillary numbers at onset
of instability for highly elastic fluids were again significantly lower than those char-
acterizing Newtonian fluids by up to a factor of 4. Significantly above the critical
condition, all fluids underwent a transition to a saw-toothed, cusped interface pat-
tern. The critical condition for this cusping transition was not directly dependent on
capillary number nor Weissenberg number, but rather scales with Wi1/2 Ca for the
range of elastic fluids examined. We believe the cusping is caused by a combination
of the high polymer extensional viscosities near the interface stagnation points and
the backflow region near the stationary outer cylinder.

We have also looked at several flows which are stable to traditional fingering
instabilities where the more viscous fluid displaces the less viscous fluid (fluid⇒air
displacement flows). Investigating the inverse roll-and-plate flow we demonstrated
that purely elastic instabilities in the bulk flow can cause surface deformations
at the fluid–air interface. Recirculation flows are prevalent in polymer process-
ing applications, including the fluid pool behind a blade coater, and the contrac-
tion flow upstream of extrusion dies (Aidun et al. 1991; Kraynik & Schowalter
1981). Our results suggest that elastic instabilities in the upstream recirculation
flows could affect the nearby free surfaces if the secondary flow was of suffi-
cient strength. In inverse forward roll coating flow, we discovered a new class of
purely elastic instabilities which are independent of viscous fingering instabilities
and bulk flow elastic instabilities. Given that inverse roll coating flow is similar to
pressure-driven injection moulding into a channel, elastic instabilities at the inter-
face could cause defects in the final moulded product because of quenched elas-
tic stresses, entrained air, polymer degradation or inherent weak regions in the
plastic.

Interfacial flows of elastic fluids show a wide range of dynamics, more diverse
than suggested by previous work. Dramatic changes in traditional viscous fingering
occur in elastic fluids, including a new class of purely elastic instabilities at the
interface. Highly elastic fluids have been shown to strongly reduce the critical flow
rates and decrease the onset wavelength of the fingering instability. We look forward
to continued exploration of elastic interfacial flows, and we seek to address many of
the questions we have raised in future work.
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authors would also like to give special thanks to Professor G. M. Homsy for his
helpful insights during the development of this work and Yoojin Kim for her work
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Figure 21. Sketch of the coordinate system on the two rotating cylinders.

Appendix. The linear stability equations for concentric cylinder coating
flows with finite film thickness

In this Appendix, the linear stability equations and results for concentric cylinder
coating flows with finite film thickness are developed. The equations valid in the
region away from the interface (cf. figure 21) are non-dimensionalized by using the
radius of the inner cylinder, R1, as the appropriate lengthscale. The origin of the
cylindrical coordinate (r, θ, z) is located at the centre of the smaller cylinder (cf. figure
21); the z-coordinate is parallel to the axes of the cylinders and the local y-coordinate
is related to r by y = (r − 1) /δ, where δ = b/R1 and b is the gap thickness (cf. figure
21). Neglecting terms of O (δ) = O

(
b/R1

)
, the usual lubrication approximation to

Cauchy’s equations of motion along with the corresponding continuity equation are
obtained:

0 = −∂p
∂θ

+
∂2vθ

∂y2
− cos θ

G
, (A 1)

0 =
∂p

∂y
, (A 2)

0 = −∂p
∂z

+
∂2vz

∂y2
, (A 3)

0 =
∂vθ

∂θ
+
∂vz

∂z
, (A 4)

where vθ and vz are the azimuthal and longitudinal velocities made dimensionless with
the rotation speed of the inner cylinder, Ω1R1, and are subject to the usual no-slip
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boundary conditions

vθ = 1, vz = 0 on y = 0, 1. (A 5)

As defined in the body of the text (cf. (1.2)), G = µΩ1 (R1 + R2) /2b
2ρg. There are two

interface conditions. The gap-averaged kinematic condition (Reinelt 1995) is given by

〈vθ〉 |θj= m1 + m2, (A 6)

where the variables enclosed by angled brackets in (A 6) are gap averaged. θj = θL, θR
refers to the left and right interfaces, and m1 and m2 are the film thicknesses made
dimensionless with the gap, b (cf. figure 21). A momentum balance performed on
the thin film region shows that the gravity force gives rise to a θ-dependent term of
O
(
m3

1,2

)
which is neglected in our derivations because we assumed m1,2 � 1; therefore,

m1 and m2 become constants. We found this to be true in our experiments a few gap
thicknesses away from the interface. The film thickness measurements were ultimately
made at θ = 3π/2 (cf. figure 21) to completely eliminate the effect of gravity and
hence the variation of the film thickness. The surface tension terms near the meniscus
are of O(δ2) so the pressure jump condition at θ = θL and θ = θR is approximated as

p|θj = 0. (A 7)

The formulation of the problem is completed by requiring that the total amount of
fluid be conserved. Let Vo be the volume of fluid confined between the two cylinders
non-dimensionalized with bR2

1 . Again neglecting terms of O (δ), we have

Vo =

∫ L/R1

0

[(θR − θL) + (2π− (θR − θL)) (m1 + m2)] dz. (A 8)

This condition is necessary to determine the relative position of the two interfaces
where the boundary conditions must be applied. When the gap between the cylinders
is initially half-filled,

θR − θL =
π (1− 2 (m1 + m2))

1− m1 − m2

. (A 9)

Solving these equations and assuming m1 = m2 = m the following steady-state
solutions are obtained:

voθ = 6 (1− 2m)
(
y2 − y)+ 1, (A 10)

po = −sin (θ)

G
+

sin (θR)

G
+ 12 (1− 2m) (θ − θR) , (A 11)

sin (θR)

G
− sin (θL)

G
= 12π (1− 4m) , (A 12)

θL = θR − π (1− 4m)

1− 2m
≈ θR − π (1− 2m) + O

(
m2
)
. (A 13)

To analyse the stability of the interfacial flow, sinusoidal disturbances are introduced
at each interface edge. The linearized equations are then solved to determine whether
the amplitude of the perturbations grows or decays for different flow conditions. The
perturbations are given by

θj = θoj + θ′j , (A 14)

θ′j = aj exp
(
iñz + St

)
, (A 15)

where S is the growth rate of disturbances and aj � 1. Note that we have only
considered perturbations where the sinusoidal disturbances on the two interfaces are
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‘in phase’, however, this does not affect our final result. In the fluid, the velocity and
pressure components are given by

vθ = voθ + v′θ, (A 16)

vz = v′z, (A 17)

p = po + p′, (A 18)

where voθ and po are the steady-state solutions; the disturbance velocities are subject
to the conditions

v′θ = v′z = 0 on y = 0, 1. (A 19)

Using the equations of motion (1)–(3) along with the pressure jump condition at the
interface, (

po + p′
) |θj= 0, (A 20)

we get

v′θ = −1

2

∂p′

∂θ
y (1− y) , (A 21)

v′z = −1

2

∂p′

∂z
y (1− y) , (A 22)

p′ |θoj =
(

12 (1− 2m)− cos (θoj )

G

)
aj exp

(
iñz + St

)
. (A 23)

Further assuming that the disturbance pressure is of the form

p′ = g (θ) exp
(
iñz + St

)
, (A 24)

where g (θ) is found from continuity,

∂2p′

∂θ2
+
∂2p′

∂z2
= 0, (A 25)

we have

g (θ) = A sinh (ñθ) + B cosh (ñθ), (A 26)

where A and B are constants of integration. The formulation of the stability problem
is therefore complete. By applying the kinematic and pressure jump conditions at the
interfaces, and assuming proximity to the critical point (i.e. S � 1), the following
expression for the growth rate of disturbances can be derived:

S = ñ tanh (ñπ (1− 2m))

(
1− cos (θR)

12G (1− 2m)

)
. (A 27)

If the interaction between the two interfaces were neglected (single interface pertur-
bation) then the following expression for S (cf. (3.8)) is obtained instead:

S = ñ

(
1− cos (θR)

12G (1− 2m)

)
. (A 28)

Note that the critical condition (S = 0) is defined by

G =
cos (θR)

12 (1− 2m)
(A 29)

for both (A 27) and (A 28). Equation (A 28) is consistent with equation (3.8) if we
note that S = Γ/Ca and h = b.
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